Kristjan Prii

VANA-ANTSLA MÕISAKOMPLEKSI ÜMBEREHITAMINE SPAAHOTELLIKS JA KOGUKONNAKESKUSEKS

LÕPUTÖÖ

Tallinn 2014
SISUKORD

SISSEJUHATUS .. 4

1 ÜLDOSA ... 5
 1.1 Ajalooline ülevaade .. 5
 1.2 Teemavalik ja selle põhjendus ... 9
 1.3 Probleemipüstitus, projekti eesmärgid .. 11
 1.4 Ülevaade projekti teemaga seonduvatest teoreetilistest aspektidest 11
 1.5 Ülevaade samatüübilistest projektidest .. 12

2 HOONE PROJEKT ... 14
 2.1 Asendiplaan ... 14
 2.2 Lähipiirkonna iseloomustus .. 15
 2.3 Piiravad tegurid .. 15
 2.4 Arhitektuurne osa .. 16
 2.5 Konstruktioonline osa .. 16
 2.6 Küte ja ventilatsioon .. 17
 2.7 Veevarustus ja kanalisatsioon .. 17
 2.8 Elektri- ja sidevarustus .. 17
 2.9 Tehnoloogiline osa ... 18
 2.9.1 Veekeskuse tehnoloogiline skeem .. 18
 2.10 Tulekaitse ... 18
 2.10.1 Kasutusviis ... 18
 2.10.2 Tuleohuklass ... 18
 2.10.3 Tulepüsivus .. 19
 2.10.4 Põlemiskoormus ... 19
 2.10.5 Tuletundlikkus ... 19
 2.10.6 Evakuatsiooniteed ... 19
2.10.7 Tuletõrje veevarustus

2.10.8 Tulekahju signalisatsioonisüsteem ja turvavalgustus

2.10.9 Suitsueemaldus

2.11 Keskkonnakaitse

2.12 Energiatõhusus

2.13 Tehnilised näitajad

KOKKUVÕTE

SUMMARY

VIIDATUD ALLIKAD

FOTODE NIMEKIRI

Lisa 1 Veepuhastusprotsessi kirjeldus

Lisa 3 Joonised

Jooniste nimekiri
SISSEJUHATUS

Minevikust meieni jõudnud kultuuripärand on oluline teadmistebaas tuleviku kujundamisel. Hästi ehitatud hoonete eluiga on sajandite pikem ehitanud meistritest. Seeläbi saame näha, mil moel mõeldi vanasti ja milliseid töövõtteid kasutati. Lahendused, mis sajandite tagusest ajast tänasesse päeva välja on jõudnud, on ajaproovile vastu pidanud. See tarkus on aluseks kaasaegsete lahenduste väljatöötamisel.

Inimtegevus lähtub pragmatismist ning emotsiionidel on pikemas perspektiivis väiksem roll. Meil võib olla siiralt kahju pärandi hääbumisest, kuid lõppotsused tehakse ikkagi karmi rahalise kalkulatsiooni alusel.

Siit järel võib, et arhitektuuripärandi kõige optimaalseaks säilimiseks tuleb need kaasaegsed restaureerimis- ja konsERVEERIMISPÕHIMÕTTEID järgides korda teha ning igapäevakasutusse tagasi tuua. Millised võivad konkreetse objekti jaoks esteetiliselt või äriliselt kõige paremad lahendused olla, see on juba iga üksikjuhtumi puhul eraldi lahendamist vajav küsimus.

Austades olnut, liigume eluga edasi.
1 ÜLDOSA

1.1 Ajalooline ülevaade

Sellistena olid mõisasüdamed väärtuslikud maastikukujunduslikud ansamblid, samal ajal kuigi nende hooned olid arhitektsed vaatamisväärsused.

Praegu, mil mõisad on oma algse rolli minetanud juba enam kui 90 aastat tagasi, on sellest omaaegsest idüllist alles vaid teatud osa. Mõisa peahoone on algkujul säilinud vaid kolmandik ning ka kõrvalhoonete-parkide osas on seis üsna sarnane. Palju on lammatud ja hävinud, palju on ümber ehitatud, palju on mõisasüdamesse püstitatud ka sobimatuid uusehitisi.” [1]

19. sajandi lõpust päritest on idapoolne juurdeehitus.
Linnuseala kujundati umbes pargiks juba 18. sajandil, mida hiljem laiendati ka teisele poole tiiki.

Üheks omalaadeimaks kõrvalhooneks on silindrikujuline koonuskatusega kärnerimaja.

Foto 3 Kärnerimaja
Säilinud kaardimaterjal 1688. aastast annab juba konkreetse ülevaate toonasest plaanilahendusest. Selle pealt on näha tänapäevani säilinud tiigid ja teed. Samuti on ära märgitud vesiveskid ja mõisamaja.

Foto 4 Vana-Antsia piirkonna kaart aastast 1688
Väljakujunenud üldkavatist näeme 1870. aasta Reinhold Wilhelm Jacobseni Vana-Antsla mõisakaardilt.

Foto 5 Vana-Antsla mõisa skeem aastast 1870

1.2 Teemavalik ja selle põhjendus

Vana-Antsla mõisa geograafiline paiknemine Riiast St. Peterburgi kulgeva tee ääres lisab veel ühe olulise suuna turismiarendamiseks. See saab olla vahepeateuseks poolel teel.

Foto 6 Vana-Antsla paiknemine marsruudil St. Peterburg – Riia
1.3 Probleemipüstitus, projekti eesmärgid

Projekti eesmärgiks on väärika ajaloo ja põneva arhitektuuriga Vana-Antsla mõisa hoonekompleksi taaskasutusse võtmine välimaksks selle hävinemist. Olemasoleva olukorra fotod on esitatud lisas 2.

2015. aastal avaneb uus Euroopa Liidu rahastusperiood, mille raames on kohalikul initsiatiivgrupil plaanis esitada suuremahuline projektitaotlus. Antud lõputöö on üks võimalik ideelahendus, mida presenteerida potentsiaalse kaasinvestori leidmiseks.

1.4 Ülevaade projekti teemaga seonduvatest teoreetilistest aspektidest

Uue lisamine vana kõrvale peab olema selgelt eristatav ning halvaks tooniks peetakse vana matkimist eesmärgiga luua illusioon ajaloolisest päritolust. Eelkirjeldatud põhimõtteid on järgitud ka käesolevas lõputöös.
1.5 Ülevaade samatüübilistest projektidest

Heaks näiteks vana hoone elluäratamisest on Põhjaka mõis, milles tegutseb restoran. Ära on tehtud hädavajalikud tööd hoone kasutuselevõtuks, kuid liigselt pole kulutatud aega ja ressursse kitsiliku sisekujunduse tekitamisele. Hea toit meelitab kliente ning mugav asukoht Tallinn-Tartu trassi ääres on oluline eduka äri võti. Kui hoone ei oleks tee pealt nähtav, vähendaks see külastatavust oluliselt.

Foto 7 Põhjaka mõisa sisevaade

Teine näide olemasolevate vanaste hoonekompleksi tervisekeskuse rajamisest on Grand Rose spaa Kuressaares. Kuna tegemist on sealse vanalinna südamega, siis oli suurte ja tehniliselt keeruliste ruumide paigutamine olemasolevasse keskkonda tõsine väljakutse. Tulemus on aga igati sümpaatne.

Uusklassitsistliku fassaadiga mudaravila peahoone ehitati toonaste arhitektide Olev Siinmaa, Erich von Wolfffeldt ja Aleksander Nürnbergi projekti järgi aastatel 1926-27.

Nüüd lisandub sellele 72 numbritoaga kaasaegne hotell.
2 HOONE PROJEKT

2.1 Asendiplaan

Vana-Antsla mõisakompleksi paiknemine ei ole Eesti mõisatele tüüpiline.
Kui klassikaline 18.-19. sajandist pärit mõisakompleks on korrapärase plaani järgi rajatud ühtne ansambel, siis Vana-Antsla puhul on hoonete paigutus ebakorrapärane. Puudub paralleelsus ja täisnurksus. Ringikujulise sissesõidutee asemel on piklik ovaalne tee, mis järgib hoovi pikaksvenitatud proportsiooni.
Selle põhjenduseks saab olla asjaolu, et olemasolevad hooned on rajatud vanadele kastelllinnuse müüridele. Sellest annab tunnistust, et keldrites oluliselt säilinud keskaegne konstruktsioon.
Selgeks tunnistuseks vana kindlustusrajatise ümberehitusest mõisakompleksiks annab ka inimtekkeline vesitõke ümber mõisa. Ülemisest järvest ja Kõvvõr järvest koosnev süsteem oli oluliseks tõkkeks vaenlane võimaliku rünnaku puhul. Vajaliku veetaset korrigeeriti vesiveski tammi abil, mis asub läänesuunal üle järve.
Kõvvõr järv asub hobuseraua kujulisena ümber poolsaare, millel mõisasüdame hooned on ehitatud. Peahoone on paigutatud fassaadiga lõunasuunas, kerge pöördega kagusse. Hotelliks ümberehitatav kõrvalhoone paikneb peahoone vastas, fassaadiga põhjasuunas.
Juurdepääs on tagatud kolme juurdepääsutee kaudu Otepää – Antsla – Tsooru maanteelt. Peasisepääs on keskmiselt teelt, hoonekompleksi põhiline teenindamine toimub lõunapoolseimalt teelt ja põhjapool on juurdepääs peahoone taha.
Parklaid on kolm, üks iga juurdepääsutee kaudu ligipääsetav. Kokku 30 parkimiskohta.
Krunt jaguneb reljeefi mööda kõrgemaks osaks, millel paiknevad praegused hooned. Spaakompleks süvendatakse kõrgema reljeefiga maastiku sisse ning see avaneb maapinnale läänesuunas, reljeefi madalamaks muutumisel.
2.2 Lähipiirkonna iseloomustus

![Vana-Antsla situatsiooniskeem](image)

Foto 10 Vana-Antsla situatsiooniskeem

2.3 Piiravad tegurid

Kuna tegemist on muinsuskaitsealuse objektiga, siis peamised piirangud projekti elluviimisel tulenevad muinsuskaitse eritingimustest, mida tänaseks väljastatud ei ole. Ajaloolistes paikades ehitamisele eelnevad arheoloogilised väljakaevamised. Antud paigas on nimetatud tõode teostamise aeg ja maht üheks oluliseks teguriks projekti realiseerumisel. Praeguseks väljapakutud lahendust korrigeeritakse väljakaevamise tulemustel ilmnenud situatsioonist lähtuvalt. Põhimõttelist lahenduse muudatust siiski ette ei nähta.
2.4 Arhitektuurne osa

Hoonekompleks on jagatud kolme ossa:

- Ajalooline peahoone, kus paiknevad sauna- ja ravikeskus, peasaal ja kohaliku kogukonna kasutuses olevad ruumid.
- Juurdeehitatav spaakompleks, mis paikneb kahe hoone vahel maa all.

Peasissekääk on treppide abil viidud maa alla. Fuajees paikneb hotelli ja veekeskuse vastuvõtt ning lobby. Edasine liikumine toimub vastavalt hoone külastuse eesmärgile kas läbi riietusruumide veekeskusesse, otse ravikesusesse või pikema peatuse korral hotelli. Lisaks pääseb olemasolevatesse hoonetesse ka maapinnalt.

Spaakompleksi seinad on 75% ulatuses pinnases. Avanemine toimub reljeefi langedes läänesuunas, vaatega pargialale ja vanadele vesiveski varemetele. Saabumisel mõisakompleksi hoovile, ei ole spaanarvutatud suurus antud tasapinnalt otse, kuna jääb külastajale üllatusmomendi. Maapinnalt, spaanarvutatud suurus antud tasapinnalt, võimab tekkida töötlus, kus reljeef tõuseb esimese korruse tasapinnani, pire lõpeb ja mõlemalt poolt tekib võimalus treppide kaudu laskuda pargialale.

Pargia ja mõisahoonete vahel paikneval alal on spetsiaalselt rajatud pargiamaatik. Ülejäänud kompleksi ümbrus on hooldatud looduslik maastik.

2.5 Konstruktiiivne osa

2.6 Küte ja ventilatsioon

Kompleksi küte lahendatakse järveveest vöttetava „maasoojuse“ baasil. Kuna tegemist on mahuka tehisveekoguga, on võimalik ökosüsteemi tasakaalust väljaviimise risk väike. Sarnaselt on lahendatud nii tehis Skivi lossi küttmine.

Veekeskuse puhul on oluline osa ka taaskasutataval vabasoojusel.

2.7 Veevarustus ja kanalisatsioon

Veevarustus ja kanalisatsioon toimib olemasoleva võrgu kaudu.

Basseinides kasutatav vesi on suletud retsirkulatsioonisüsteem, mida taidetakse kohalikust võrgust.

2.8 Elektri- ja sidevarustus

Elektitarbimine on tagatud olemasoleva võrgu kaudu. Peakaitsme suuruseks on 100 A, mis tagab piisava voolutugevuse veekeskuse tehnoloogia tööteta tööks hoidmiseks. Märgruumides ja basseinide juures kasutatakse spetsiaalselt märgadesse ruumidesse mõeldud elektriseadmeid kaitseklassiga IP68.
2.9 Tehnoloogiline osa

2.9.1 Veekeskuse tehnooloogiline skeem

Basseinitehnika osas konsulteeris projekti Arvo Aedla Basseinitehnika AS-st. Veekeskuses on kolm eraldiseisvat basseini:

- Sportbassein 4 x 25 m ujumisradadega, kogumahtuvusega ca 400 m³.
- Vabaajabassein, mis jaguneb omakorda kahte ossa:
 - Suur bassein mahtuvusega ca 300 m³
 - Hämarbassein mahtuvusega ca 100 m³
- Lastebassein mahtuvusega ca 10 m³

Vabaaja- ja lastebasseinis on lisaks purskaevud ja massaažiseadmed. Erinevate veeseadmete tootlikkus jäeb vahemikku 32-75 m³/h. Basseinide vett puhastatakse suletud retsirkulatsioonisüsteemide abil. Lastebasseini vee tsirkuleerimisaeg on 0,4 tundi ja ülejäänud basseinidel 4,5 tundi.

Retsirkulatsioonisüsteem koosneb basseinist, ülevoolumahutist, filtritest, soojusvahetistest basseinivee soojendamiseks ja neid ühendavatest torustikest koos ventiilide ja liitmikega. Kõik kasutatavad seadmed on ette nähtud ühiskondlikes basseinides kasutamiseks ning vastavad ohutustehnika, tervishoiu ja töökindluse alastele nõuetele. [3]

Veepuhastusprotsessi kirjeldus on esitatud lisas 1.

2.10 Tulekaitse

2.10.1 Kasutusviis

Projekteeritav kompleks kuulub II ja IV kasutusviisi.

2.10.2 Tuleohuklass

TP2 tuldtakistav. Ehitise kandekonstruktsioon ei tohi ettenähtud aja jooksul tulekahjust variseda, kusjuures ettenähtud aeg on lühem tulekindla ehitise suhtes ettenähtud ajast (TP1). Vastavalt
tuleohuklassile on lubatud kuni 50 majutuskohaga hotelli ja kuni 250 istekohaga restorani ehitamine.

2.10.3 Tulepüsivus

2.10.4 Põlemiskoormus
Põlemiskoormus alla 600 MJ/m² – majutusruumid, restoranid, spordisaalid, teatrid jm.

2.10.5 Tuletundlikkus
B-s1 d0
B – ehitise osa, mis on tuletundlik, kusjuures tuletundlikkus väljendub süttivuses ja eriti vahesel määrul suits eraldumises ning põlevaid tilku ega tükke ei esine;
s1 – ehitise osa, milles suits moodustumine (eraldumine) on eriti vähene;
d0 – ehitise osa, milles põlevaid tilku või tükke ei esine;

2.10.6 Evakuatsiooniteed
Peahoonest on seitse väljapääsu, millest kolm asuvad soklikorrusel ja neli esimesel korrusel. Evakuatsiooniteed maksimaalselt 45 m. Spaahoonest toimub evakuatsioon peasiswa pääsu kaudu või läbi ujulaosa pargialale. Evakuatsiooniteed maksimaalne pikkus 45 m. Hotellis on moodustatud kolm eraldi tuletökkesektsiooni. Liikumine sektionsoonide vahel toimub läbi tulekindla trepikoja. Teise ja kolmanda korruse evakuatsiooniks on lisaks paigaldatud väline keerdtrepp. Evakuatsiooniteed maksimaalne pikkus 30 m.

2.10.7 Tuletörje veevarustus
Veevarustus on tagatud kõrvalolevast veekogust.

2.10.8 Tulekahju signalisatsioonisüsteem ja turvavalgustus
Paigaldatud on autonoomne tulekahjusignalisatsioonisüsteem ja evakuatsioonivalgustus toimimisajaga vähemalt üks tund.
2.10.9 Suitsueemaldus

Suitsueemaldus toimub avatud uste ja akende kaudu. Eraldi suitsuluuke ei paigaldata.

2.11 Keskkonnakaitse

Hoone ehitamise ja ekspluateerimisega olulisi keskkonnamõjusid ei kaasne. Olemasolev väärkuslik haljastus säilitatakse ja vajadusel asendatakse.
Prügikäitluseks sõlmitakse teenuse osutamise leping kohaliku prügiveo ettevõttega.

2.12 Energiatõhusus

Hoone projekteerimisel on lähtutud Vabariigi Valitsuse poolt 30.08.2012 vastu võetud määrusest nr. 68 “Energiatõhususe miinimumnõuded”.

Määrusest lähtuvalt:

Hoone välispiired on ehitatud pikaajalise õhkupidavatena ja piisavalt soojustatud. Otstarbeka soojustuse määramisel lähtutakse hoone energiatõhususe nõuetest, ruumide soojustlikust mugavust ja hallituse ning kondensaadi vältimisest külmasildadel, sise- ja tarindites.

Soojustuse valikul on lähtutud sellest, et ehitis oleks hea energiatõhususe tasemega.

1) välisseinte soojusläbivus 0,15–0,25 W/(m²·K);
2) katuste ja põrandate soojusläbivus 0,1–0,2 W/(m²·K);
3) akende ja uste soojusläbivus 0,6–1,1 W/(m²·K)

Projekteerimisel püstitatakse eesmärk saavutada kogu kompleksi energiatõhususarvuks vähem kui 130 kWh/m²a, mis teeb kaalutud energiaerikasutuse klassiks A.
2.13 Tehnilised näitajad

<table>
<thead>
<tr>
<th>Aru</th>
<th>Arv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krundi sihtotstarve</td>
<td>Maatundusmaa 90% Õhuskondlike ehitiste maa 10%</td>
</tr>
<tr>
<td>Hoone pikkus</td>
<td>114.0 m</td>
</tr>
<tr>
<td>Hoone laius</td>
<td>82.0 m</td>
</tr>
<tr>
<td>Hoone kõrgus</td>
<td>12.75 m</td>
</tr>
<tr>
<td>Hoone korruselis sh:</td>
<td>3 / -1</td>
</tr>
<tr>
<td>Maapealsete korruste arv</td>
<td>3</td>
</tr>
<tr>
<td>Maa-aluste korruste arv</td>
<td>1</td>
</tr>
<tr>
<td>Hoonealune pindala</td>
<td>4314.3 m²</td>
</tr>
<tr>
<td>Suletud netopindala sh.</td>
<td>6769.6 m²</td>
</tr>
<tr>
<td>Maapealsete korruste netopindala</td>
<td>4282.8 m²</td>
</tr>
<tr>
<td>Maa-aluse korruse netopindala</td>
<td>2486.8 m²</td>
</tr>
<tr>
<td>Suletud brutopindala sh.</td>
<td>8779.5 m²</td>
</tr>
<tr>
<td>Maapealsete korruste brutopindala</td>
<td>5612.7 m²</td>
</tr>
<tr>
<td>Maa-aluse korruse brutopindala</td>
<td>3166.1 m²</td>
</tr>
<tr>
<td>Köetav pindala sh.</td>
<td>5949.1 m²</td>
</tr>
<tr>
<td>Hoone maht sh.</td>
<td>33600.0 m³</td>
</tr>
<tr>
<td>Maapealsete korruste maht</td>
<td>22500.0 m³</td>
</tr>
<tr>
<td>Maa-aluse korruse maht</td>
<td>11100.0 m³</td>
</tr>
<tr>
<td>Kasutusiga</td>
<td>50 aastat</td>
</tr>
</tbody>
</table>

Kogu hoone logistika lahendati samuti erinevatel tasapindadel, mis võimaldab erinevate hooneosade vahel liikumist ilma väliskeskkonda minemata. Samas avanevad hoone sissepääsud ka maapinnale.

Lähedalpaiknev veekogu võimaldab hoone küttüsteemiga rajada taastuvenergia baasil, mis veekeskuse energiakulukust silmas pidades on oluline tegur. Energiatöhusust lisatakse kaasaegseid ehitusvõtteid ning materjale kasutades.

Illustratiivses materjalis on ära toodud hoone asendiplaaniline lahendus ning plaanid, löiked ning vaated. Lisatud on ka lahendust selgitavad 3D visualiseeringud.

SUMMARY

The topic of this graduation thesis is the conversion of the Vana-Antsila manor complex into a spa hotel and community centre. In addition to restoration of existing manor buildings, a new spa complex will be built. The former buildings will be connected with the new ones, following which they will be assigned new functions as a hotel and therapeutic centre.

The historical location makes it a suitable site for a recreational complex offering a wide array of activities and allows the valuable buildings to be saved from decay. It is considered important that the future centre offer activities for locals in Vana-Antsila as well as visitors. A company staffed by non-locals aimed at visitors would remain insular and would not function optimally in a small community.

The solution proposed stemmed from the desire to discretely add new buildings to an existing complex. As the relief in the area allows a multi-level approach, it was decided to build part of the new spa centre below ground. This kept a visually dominant competitor to the historical buildings from arising. In spite of this, the spa complex is spacious and light-filled and features picturesque views of the artificial lake.

The logistics of the entire building were similarly handled on different levels, allowing movement between parts of the building without setting foot outside. The building entrances are also on ground level.

The nearby body of water allows the building’s heating system to be renewable energy based, which is an important factor bearing in mind the high energy expenditure of an aquatic centre. Energy efficiency will be boosted using modern construction techniques and materials.

The illustrative material includes a location map, floor plans, section and elevations. 3D visualizations are also included for explanatory purposes.

2015 will mark the start of the new multiannual financing framework of the EU, and the local initiative group plans to submit a large application for funding. This thesis is one possible conceptual design that can be presented for finding a potential co-investor.
VIIDATUD ALLIKAD

FOTODE NIMEKIRI

Foto 1 Koluvere loss ...6
Foto 2 Kunagine veranda Vana-Antsla mõisahoone läänetiivas ..6
Foto 3 Kärnerimaja ..7
Foto 4 Vana-Antsla piirkonna kaart aastast 1688 ...8
Foto 5 Vana-Antsla mõisa skeem aastast 1870 ...9
Foto 6 Vana-Antsla paiknemine marsruudil St. Peterburg – Riia10
Foto 7 Põhjaka mõisa sisevaade ..12
Foto 8 Grand Rose spa sisevaade ..13
Foto 9 Butiikspa Hedon Pärnus ..13
Foto 10 Vana-Antsla situatsiooniskeem ...15
Foto 11 Vana-Antsla mõisa peahoone ...28
Foto 12 Hotelliks ümberehitatav kõrvalhoone ..28
Foto 13 Peavärav ja sissepääs ...29
Foto 14 Vaade lõunasse kerglikulussillale ja kärnerimajale29
Foto 15 Vaade lääne vesiveski varemetele ...30
Foto 16 Ajaloolised pargirajatised ...30
Foto 17 Vaade peasaalile ..31
Foto 18 „Sigarituba“ ...31
Foto 19 Veranda ...32
Foto 20 Peahoone amfilaad ..33
Foto 21 Peahoone portaal ..34
Lisa 1 Veepuhastusprotsessi kirjeldus

Tabel 1.

Basseiniveega kontaktisolevad materjalid

<table>
<thead>
<tr>
<th>Seade/koht</th>
<th>Materjal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sissebetoneeritud äravoolud ja sisselasked</td>
<td>ABS-plast, klaasplast, roostevaba teras AISI 316, pronks</td>
</tr>
<tr>
<td>Torustik ja liitmikud</td>
<td>Plastifitseerimata polivinüülkloriid (PVC-U)</td>
</tr>
<tr>
<td></td>
<td>PVC spetsiaalliim (vees mittelahustuv)</td>
</tr>
<tr>
<td>Ventiilid</td>
<td>Plastifitseerimata polivinüülkloriid (PVC-U)</td>
</tr>
<tr>
<td></td>
<td>Kemikaalidele vastupidav kumm (tihendid)</td>
</tr>
<tr>
<td>Pump</td>
<td>Plast</td>
</tr>
<tr>
<td>Filter</td>
<td>Klaasplast</td>
</tr>
<tr>
<td></td>
<td>Kvartsliiv (fraktsioon 0.5 … 2.0mm)</td>
</tr>
<tr>
<td>Soojendi</td>
<td>roostevaba teras AISI316</td>
</tr>
</tbody>
</table>

Vee mehhaaniline puhastamine

Filtreeritav vesi võetakse basseini ülemistest kihtidest, kust see pumbatakse móöda torusid liivafiltritesse. Samaaegselt võib pump võtta vett ka põhjakaevust. Esmalt lähib vesi pumba ees oleva jämefiltri, mis püüab kinni juuksekarvad jm vette sattunud pisiesemed. Seejärel surub pump vee móöda survetorustikku liivafiltritesse. Harilikus töörežiimis siseneb vesi filtrisse ülevalt, lähib liivakihid (ülemine fraktsioon 0.5 … 1.0 ja alumine 1.5 … 2.0) ja tuleb filtrist välja filtri põhjas olevate sõelkollektorite kaudu. Vees olevad peened anorgaanilised ja orgaanilised osakesed jäävad pidama liivakhiit. Filtri töö tõhustamiseks on kasutatud koagulandi ja aktiivsöejahu lisamist. Peale filtreerimist lähib puhas vesi soojusvaheti ja suunatakse tagasi basseini põhjasisselasete kaudu. Sisselasked on jaotatud basseini selliselt, et tagada vee ühtlane liikumine ja segunemine kogu basseinis.

Filtrite puhastamiseks tehakse vastavalt vajadusele tagasipesu – vesi suunatakse läbi filtri alt üles ja koos filtrist väljapestud mustusega kanalisatsiooni.
Vee keemiline töötlemine

Vee keemiline töötlemine on vajalik mikroorganismide ja vetikate hävitamiseks ning mitmesuguse uujatega basseini sattuva orgaanilise aine oksüdeerimiseks. Tekkivad ühendid jäävad pidama liivafiltrisse. Basseinis kasutatakse oksüdeeritava kloori. Kemikaalide doseerimine toimub automaatselt kontrolleri abil, mis tagab vaba kloori väärtuse 0,4 mg/l juures ja pH väärtuse 7,2. Desinfitseerimisaine on valitud järgnevatel kaalustustel:

- Alternatiivsed meetodid (broom, ioon, ultraviolett jne) on tehniliselt kompliitseeritumad, vähem efektiivsed ja seetõttu vähem levinud;
- Tahke kloor on lihtsalt kättesaadav ja madalama hinnaga; seadmed on töökindlad ja ekspluatatsioonis ohutud.
- Kloori kasutamine on seadustega nõutav.

Basseinivee neutraalsuse säilitamiseks lisatakse basseini vette väävelhappe (H₂SO₄) lahust. Happe lahuse lisamine toimub samuti automaatselt doseerimispumba abil. Pumpa juhib regulaator, millel on elektromagnetiline andur vee pH mõõtmiseks.

Automaatse doseerimise tulemusena on kogu protsess juhitav sõltuvalt basseini saastekoorumusest. [3]

Foto 11 Vana-Antsla mõisa peahoone

Foto 12 Hotelliks ümberehitatav kõrvalhoone
Foto 13 Peavärav ja sissepääs

Foto 14 Vaade lõunasse kergliikulusillale ja kärnerimajale
Foto 15 Vaade läände vesiveski varemetele

Foto 16 Ajaloolised pargirajatised
Foto 17 Vaade peesaalile

Foto 18 „Sigarituba“
Foto 19 Veranda
Foto 20 Peahoone amfílaad
Foto 21 Peahoone portaal
Lisa 3 Joonised

Jooniste nimekiri

Joonis 1 asendiplaan
Joonis 2 korruseplaanid 0. ja 1.
Joonis 3 korruseplaanid 2. ja 3.
Joonis 4 lõiked
Joonis 5 Graafilised visualiseeringud