TTK Links: Home Page | TTK Moodle | ÕIS
TTK/UAS Repository For Digital Teaching and Learning Resources

L6e kategooria elektrisõiduki raami projekteerimine

Kaabel, Sven Daniel (2019) L6e kategooria elektrisõiduki raami projekteerimine. [thesis] [en] Designing of the L6e category electric vehicle frame.

[img] PDF - Published Version
Restricted to repository personnel only until 13 May 2024.

Download (2MB)
[img] Other (lihtlitsents) - Other
Restricted to repository personnel only until 13 May 2024.

Download (620kB)

Abstract

Antud lõputöö käigus sai leitud L6e kategooria linnaelektrisõidukile erinevaid kerede ja raamide tüüpe võrreldes sobiv raam. Heade valikute hulka kuulusid kandevkere ja monokokk, kuid enamjaolt tootmise ja tööriistade kõrge hinna ning eeldatavalt madala tootmismahu tõttu tuli need valikud kõrvale jätta. Valikuks sai toruraam kombineeritud kanttorust ja ümartorust. Seadusest ja kategooria nõuetest selgus, et antud katergooriale ei ole antud väga palju piiranguid. Oli oluline hoida raami lõplik mass madal, et hiljem muude detailide, nagu mootorite ja vedrustuse lisandumine ei tõstaks sõiduki eeldatavat kaalu üle seadusega lubatud tühimassi, milleks on 350 kg. Kasutades Autodesk Inventor Professional tarkvara, loodi sõiduki raam esialgu virtuaalsel kujul valmis. Inventor keskkond võimaldas läbi mängida erinevad mudeli analüüsid, et näha millised muudatused raamis tõstavad väändejäikust. Tänu kümnete erinevate muudatuste sisseviimisel, saime oluliselt tõsta esialgse raami väändejäikust, samal ajal hoides raami massi madalal. Väändejäikuse eesmärk oli paika pandud, mis on sarnaste väikeautode puhul rahuldav tulemus. Väändejäikus on oluline näitaja, see näitab kas raam piisavalt hea, et pidada vastu igapäevastele olukordadele linnas, olgu see kurvide võtmine, künklikul teel sõitmine või isegi parkmine ebatasasel pinnasel.

Abstract [en]

In the course of this thesis, a different frame and frame type was found compared to the L6e category urban electric vehicle. Good choices included carrier and monocoque, but due to the high cost of production and tools, and the expected low production volume, these choices had to be ignored. The choice was made and it was tubular frame chassis, combined with square and round tubes. It became clear from the law and the requirements of the category that there are not many restrictions given to this particular vehicle. It was important to keep the final weight of the frame low so that later the addition of other parts, such as engines and suspension, would not increase the vehicle's expected weight beyond the static weight of 350kg. By using Autodesk Inventor Professional software, the vehicle frame was initially created in virtual form. The Inventor environment made it possible to play different model analyzes to see what changes in the frame increase torsion. Thanks to the introduction of dozens of changes, we were able to significantly increase the original frame's torsional stiffness while keeping the frame at low weight. The torque target was at least XXXX Nm/deg, which is a satisfactory result for similar small cars. Torsion is an important indicator, it shows whether the frame is good enough to resist everyday situations in the city, whether it is taking turns, driving on hills or even parking on uneven ground.

Item Type: thesis
Advisor: Sten Soomlais
Subjects: Transport > Automotive engineering > CATIA program
Transport > Automotive engineering > Car construction > Body and chassis
Transport > Automotive engineering > Car construction > Technical requirements for cars
Divisions: Institute of Engineering > Automotive Engineering
Depositing User: Sven Daniel Kaabel
Date Deposited: 06 Jun 2019 12:41
Last Modified: 06 Jun 2019 12:41
URI: http://eprints.tktk.ee/id/eprint/4249

Actions (login required)

View Item View Item