Mario Teinlum

POLTLIITEGA EEMALDATAVATE ELEMENTIDEega TURVAPUUR

LÕPUTÖÖ

Transporditeaduskond
Autotehnika eriala

Tallinn 2017
SISUKORD

SISSEJUHATUS.. 3

1. KAVANDAMINE .. 4
 1.1. Turvapuuri olemus .. 4
 1.2. Eesmärk ... 4
 1.3. Söiduk .. 5
 1.4. Turvapuuri eskiisid ... 6
 1.5. Nõuded .. 7

2. TURVAPUURI PROJEKTEERIMINE ... 13
 2.1. 3D mudeli valmistamine .. 13
 2.2. Lisaelemendid .. 16
 2.3. Projekteeritud turvapuuri baasstruktuur ... 18
 2.4. Eemaldatavad elemendid .. 19

3. MATERJALIVALIK .. 21
 3.1. Saadavus Eestis ... 21
 3.2. Valik ... 21
 3.3. Võrdlus .. 22

4. TUGEVUSANALÜÜSID ... 23
 4.1. Jõu avaldamine pikisuunalisele elemendile ... 25
 4.2. Jõu avaldamine turvastruktuuri ülemisele osale ehk katusele 29
 4.3. Jõu avaldamine peamisele turvakaarele ... 31
 4.4. Jõu avaldamine a-piilarri piirkonda .. 40
 4.5. Järeldus ... 42
SISSEJUHATUS

1. KAVANDAMINE

1.1. Turvapuuri olemus

Turvapuuriks nimetatakse konstruktsiooni, mis on projekteeritud ning konstrueeritud vastavalt sõiduki salongiruumile kaitsmaks selle reisijaid kokkupõrke korral. Turvapuuri on ka oluline lisaväärtus sõiduki kere jäigastava eesmärgi näol. Turvapuure kasutatakse nõuetekohaselt erinevates võistlussarjades. Nendeks on ringrajasõit, kiirendusvõistlus, drift ning erinevad ralliformaadid.

1.2. Eesmärk

1.3. Sõiduk

Sõiduk, millele lõputöö teema pühendub, kuulub kliendile. Sõidukiks on 1984. aasta Audi 80, mida tuntakse kui mudeliseeria Typ 81/85, kerekood B2 järgi (Sele 1). Antud sõiduk on varem osalenud lõppkiirusvõistlustel One Mile Challenge ning saavutanud parima tulemuse 252 km/h [2]. Kuna tulevikuplaanid sisaldavad mitmeid modifikatsioone, sh võimsamat mootorit ning suuremaid kiiruseid, on kohustuslik paigaldada sõidukile turvapuur. FIA reeglid näevad ette, et turvapuur on kohustuslik kõigil sõidukitel, mis võimaldavad kiirust rohkem kui 217,2 km/h [8].

Sele 1. Sõiduk Audi 80 B2 Typ 85, millele on pühendatud lõputöö [2]

1.4. Turvapuuri eskiisid

Enne projekteerimise algust uuriti välja vastavad nõuded ning valmistati algupärane eskiis väljaselgitamaks antud sõidukile sobilik lahendus (Sele 2). Eskiisi valmistamisel koguti ideid nii töökoha poolt pakutud olemasolevate sõidukite lahendustest kui ka interneti vahendusel leitud piltide põhjal. Antud sõidukile on leitud mitmeid erinevaid lahendusi, kuid paraku Eesti riigi reeglitele mittevastavaid. Palju leidub ka keeruliste lahendustega turvastruktuure, mis täidavad pigem näitusekvaliteeti, mitte reaalseid ohutsnõudeid.
1.5. Nõuded

Baasstruaktuuri kujundus valiti FIA Appendix J – Article 253 paragrahvi 8.3.1 [8] järgi variant 253-3, mis sisaldab endas järgnevat: 1 peamine turvakaar, 1 eesmine põikisuunaline element, 2 pikisuunalist elementi, 2 tagumist elementi ning 6 paigaldusjalga (Sele 5). Tehtud valik põhineb vajadusel saavutada võimalikult lihtne ja kompaktne lahendus. Teiste variantide seas oli sisse toodud palju lisaelemene, mis autori poolt projekteeritavas turvastruktuuris vajalikud pole.
Sele 5. Baasstruktuuri kujundus FIA Appendix J – Article 253 paragrahv 8.3.1-st [8]

- 1 – peamine turvakaar;
- 2 – esimene põikisuunaline element;
- 3 – pikisuunalised elemendid;
- 4 – tagumised elemendid.

Nõuded sisaldavad endas järgnevaid punkte [8]:

- peamine turvakaare kontuuri vertikaalne osa peab olema võimalikult lähedal kere interjöörikontuuriile, millel tohib olla alumises vertikaalses osas vaid üks paine;
- eesmine põikisuunaline element ja pikisuunalised elemendid peavad järgima tuuleklaasi profiili võimalikult lähedal kerele, millel tohib olla alumises vertikaalses osas vaid üks paine;
- peamine turvakaare, eesmise põikisuunalise elemendi, pikiuunaliste elementide ja tagumiste elementide ühenduskohad peavad olema katusetasandil;
- kõikidel juhtudel ei tohi olla rohkem kui 4 eemaldatavat elementi katusetasandil;
- tagumised elemendid peavad olema ühendatud peamise turvakaarega katusetasandil ülemiste turvakaare painete juures, võimalusel eemaldatavatena;
• tagumised elemendid peavad vertikaaltasapinnaga moodustama vähemalt 30° nurga, peavad suunduma sõidukis tahapoole ning peavad olema võimalikult sirged ja lähedal kerele kui võimalik.

Projekteeritava turvapuuri eemaldatavad elemendid, milleks on uksediagonaalid, valiti FIA Appendix J – Article 253 paragrahvi 8.3.2.1.2 järgi variant 253-11 [8] eesmiste diagonaalidele (Sele 6) ning variant 253-17 tagumiste diagonaalidele (Sele 7).

Sele 6. Projekteeritava turvapuuri eesmiste eemaldatavate elementide näidis [8]

Sele 7. Projekteeritava turvapuuri tagumiste eemaldatavate elementide näidis [8]
Nõuded sisaldavad endas järgnevaid punkte [8]:

- variante võib kombineerida;
- disain peab olema identne mõlemal poolel;
- nad võivad olla eemaldatavad;
- küljekaitse peab olema võimalikult kõrgel, kuid tema ülemine kinnituskoht ei tohi olla kõrgemal kui pool ukseavasuse kõrgusest, mõõdetuna ukseavause alumisest servast;
- ilma kaassõitjata võistlustel võib paigaldada vaid ühe elemendi juhi poolele ega pea olema identne teise poolega.

Tehtud valik põhineb vajadusel saavutada võimalikult lihtne ja kompaktne lahendus. Teiste variantide seas oli sisse toodud palju lisaelemente, mis autoril poolt projekteeritavas turvastruktuuris vajalikud pole.

Turvapuuri ühendamine eemiste amortisaatoripüstakutega, variant 253-25, on nõuete kohaselt lubatud ilma konkreetsete reeglite tõttu, antud on vaid illustreeriv joonis (Sele 8). Antud elemendid peavad olema ühendatud kere ja turvapuuri vahel keevisõmlusega [8]. Rohkem valikuvarianti antud elementide suhtes ei antud.

Sele 8. Projekteeritava turvapuuri pikisuunaliste elementide ning eemiste amortisaatoripüstakute vahelise ühenduse näidis [8]

Lisaks on lubatud paigaldada ka põikisuunaline element tagumiste elementide vahele vastavalt variandile 253-28 (sele 9) ning põikisuunaline element pikisuunaliste elementide vahele esiklaasi alumise serva juurde vastavalt variandile 253-29 (Sele 9) [8].
Võimalus lisada täiendavaid tugevust lisavaid elemente ristide näol pikisuualiste elementide ning tagumiste elementide vahele eksisteeris samuti, kuid töö autor ei näinud projekteerimist alustades nende vajadust.

Eemaldavate elementide kinnitusvahendite nõudeid järgiti FIA Appendix J – Article 253 paragrahv 8.3.2.4 järgi ning valiti variant 253-47 (Sele 10) [8].
Nõuded sisaldavad endas järgmisi punkte [8]:

- kui eemaldatavaid elemente kasutatakse turvapuuri konstruktsioonis, peavad demonteeritavad liigendid olema kooskõlas FIA reeglitega;
- neid ei tohi kinnitada paigaldusjärgselt keevisõmblusega;
- poltidel ja mutritel peab olema ISO standardi järgi minimaalne kvaliteet 8.8;
- demonteeritavad liigendid on mõeldud kinnitamaks ainult valikulisi eemaldatavaid elemente. Nendega ei tohi ühendada ega kinnitada turvapuuri baasstruktuuri.

Antud valik langetati peamiselt lõputööd läbivat eesmärki lihtsus, kompaktsus ja praktilisus silmas pidades. Sellistlaadi kinnitusviisiga on võimalik eemaldatavaid elemente demonteerida ning monteerida kiirelt ja mugavalt, kui selleks peaks vajadus tekkima.

Turvapuuri enda kinnitamine toimub FIA Appendix J – Article 253 paragrahvi 8.3.2.6 järgi [8].

Nõuded sisaldavad endas järgmisi punkte [8]:

- peamise turvakaare ning pikisuunaliste elementide kinnitamine kere külge peab toimuma 120 cm² suuruse 3 mm paksuse metallplaadiga, mida võib kinnitada keevisõmblusega või polttiitega kere külge;
- polttiite puhul on vajalik kere külge keevisõmblusega kinnitada alusplaadid, kuhu külge turvapuur polttiitega paigaldada;
- polttiite kasutamisel on minimaalne lubatud kogus 3 polti;
- poldid, mida lubatakse kasutada peavad olema minimaalselt diameetriga M8 ning omama ISO standardi järgi kvaliteeditaset 8.8;
- tagumisi elemente võib ühendada kerega keevisõmbluse abil.

Lubatud materjalide nõuded on järgnevad [8]:

- materjal – külmtömmatud õmblusteta puhas süsinikteras, mille süsinikusisaldus on maksimaalselt 0,3%, minimaalne tömbetugevus 350 N/mm²;
- minimaalsed mõõtmed peamise turvakaare, eesmise põikisuunalise elementi, pikisuunaliste elementide ning tagumiste elementide jaoks (välisdiameeter ja seinapaksus) 45 mm x 2,5 mm või 50 mm x 2,0 mm;
- minimaalsed mõõtmed eemaldatavate elementide ning muude lisaelementide jaoks (välisdiameeter ja seinapaksus) 38 mm x 2,5 mm või 40 mm x 2,0 mm.
2. TURVAPUURI PROJEKTEERIMINE

2.1. 3D mudeli valmistamine

Turvastruktuuri 3D mudel otsustati valmistada arvutiprogrammiga Solid Edge ST8, millel on võimalus lisaks joonistele teha ka tugevusanalüüse. Kogu turvapuuri aluseks on peamine turvakaar, mis kõige esimese elemendina valmistati (Sele 11).

Sele 11. Projekteeritud peamine turvakaar [autori joonis]

Sejärel lisati peamisele turvakaarele nii pikisuunalised elemendid, mis suunduvad peamisest turvakaarest sõiduki suhtes ettepoole kui ka tagumised elemendid, mis suunduvad peamisest turvakaarest sõiduki suhtes tahapoole (Sele 12).
Sele 12. Projekteeritud peamine turvakaar, põikisuunaline element ning tagumine element kolmvaates eestpoolt [autori joonis]

Sõiduki salongiruumi paigaldatava turvastruktuuri mudeli komplektsuse tagamiseks oli tarvilik lisada ka vajaminevad põikisuunalised elemendid ette tuuleklaasi kohale, tuuleklaasi alla ning tagumise klaasi ülaserva (Sele 13, Sele 14). Lisati vastaspoole põikisuunaline element ning tagumine element. Saavutati mudeli esialgse kontseptsiooni valmistulemus (Sele 13, Sele 14).

Sele 13. Esialgne turvapuuri kontseptsioon kolmvaates eestpoolt [autori joonis]
Üheks keerukamaks ühenduskohaks valitud turvapuuri konfiguratsioonil on ühendus peamise turvakaare, pikisuunaliste elementide ning tagumiste elementide vahel (Sele 15). Kokku liidetakse rohkem kui kaks elementi ning tehtud mõõtmised peavad olema väga täpsed. Antud lahenduse keerukus tuleneb sõiduki salongiruumi kitsikusest ning eesmärgist säilitada võimalikult kerelähedane lahendus.

Sele 16. Eestmiste amortisaatoripüstakute ja turvapuuri vaheline element lähivaates [autori joonis]

2.2. Lisaelemendid

Otsuses kasutada vajaduse korral sõidukisse paigaldataval turvapuuril ka eemaldatavaid elemente, lisati 3D mudelile nende kinnituskohad peamisele turvakaarele, pikisuunalistele elementidele ning tagumistele elementidele (Sele 17). Ühtlasi lisati konstruktsioonile ka vajalikud kinnituskohad sõiduki kere suhtes. Turvapuuri peamine turvakaar ning pikisuunalised elemendid ühendatakse sõiduki kere külge poltliitega 120cm² suuruse, 3 mm paksuse plaadiga, millel kasutatakse nelja M10 suurusega 8.8 kvaliteedtasemega polti iga ühenduse juures (Sele 18). Eesmiste ja tagumiste amortisaatoripüstakute ja turvapuuri vaheline ühendamine toimub keevisliitega. Samas on võimalik kasutada ka keevisliidet peamise turvakaare ning pikisuunaliste elementide ja sõiduki kere vahelisel ühendamisel. Lubatud on mõlemad variandid.
Sele 17. Turvapuuripooled kinnituskõrvad eemaldatavatele elementidele lähivaates [autori joonis]

Sele 18. Kinnitusplaatide mõõtmed [autori joonis]
2.3. Projekteeritud turvapuuri baasstruktuur

Kõikide elementide omavahelisse kooskõlla viimisel turvapuuri baasstrukturi tagamiseks valmis esimene kontseptsioonversioon mis on kooskõlas ka järgitud reeglitega FIA Appendix J – Article 253 suhtes (Sele 19). Tegemist on võimalikult lihtsa konstruktsiooniga, millele vajaduse esinemisel on võimalik lisatugevust pakkuvaid elemente juurde lisada. Nendeks võivad olla näiteks rist pikisuuna- ja selgeelementide vahel, rist tagumiste elementide vahel, lisaelemendid eesmiste amortisaatoripüstakute ning turvapuuri vahele, valik tugevdusnrkasid erinevate ühenduskohtade vahel ja ehk ka diagonaal või rist peamise turvakaare vahele.

Sele 19. Projekteeritud turvapuuri baasstruktuur kolmvaates [autori joonis]
2.4. Eemaldavatud elemendid

Eemaldavateks elementideks antud turvastrutkuuril on eesmised ja tagumised uksedüagonaalid (Sele 20). Nende kinnitused turvapuuri suhtes on kooskõlas eelnevalt välja toodud FIA Appendix J – Article 253 paragrahvi 8.3.2.4 järgi variant 253-47 (Sele 21, Sele 22).

Sele 20. Eemaldav element uksedüagonaal [autori joonis]

Eesmiste uksedüagonaalide tarbeks vajaminev toru peab olema pikkusega 885 mm ning tagumiste uksedüagonaalide tarbeks 1000 mm.

Sele 21. Eemaldatava elemendi kinnitus turvapuuri suhtes lähivaates [autori joonis]
Keermeosa antud kinnitusvahendil on M12 x 1,5. Antud kinnitusvahendit on võimalik hankida nii sisseostutootena kui ka ise valmistada (Sele 22).

Sele 22. Eemaldatava elemendi kinnitusvahendi detailvaade [autori joonis]

Kinnitusvahendid ja uksediagonaal ühendatakse omavahel tsentríst keermestatud (M12 x 1,5) puksiga, diameetriga 33 mm ning paksusega 15 mm, pildil märgistatud rohelise värvusega (Sele 22). Puks ühendatakse uksediagonaali toru külge keevisliitega (Sele 21). FIA Appendix J – Article 253 reeglistikus antud ühendusviisi kohta nõuded mõõtude suhtes puudusid (Sele 10) [8].
3. MATERJALIVALIK

3.1. Saadavus Eestis

Materjalivaliku puhul selgitati esimese asjana, milliseid nõuetekohaseid materjale Eestist võimalik soetada on. Sobivad materjalid otsiti välja vastavalt FIA Appendix J – Article 253 paragrafvis 8.3.2.6 toodud nõude minimaalne tõmbetugevus 350 N/mm² järgi. Samas arvestades ka materjadi võimalikku kogumaksumust võeti vastu otsus valida võrdluseks pigem odavamapoolsed variandid. Isikliku huvi rahuldamiseks võrreldi ka tipptaseme materjali, mida on võimalik soetada vaid välismaalt, paraku oluliselt kõrgema hinna eest. Üldiselt on Eestist saada mitmeid erinevaid sobilikke materjale.

3.2. Valik

Tehes päringuid Eestis metallmaterjaliga tegutsevatele ettevõtetele otsustati kaaluda 3-e erineva materjali võrdlemist [10][11]. Lisaks toodi võrdlusesse üks välismaine tipptaseme materjal, mis on küll teistsuguse tooteviisiga, kuid kasutatakse siiski ka turvapuuri materjalina. Materjalivaliku tegemise põhjus põhjus enne tugevusanalüüsi osa seotud programmist Soli Edge ST8 tuleneva sätete muutmise vajadusest.

Nendeks on (nime selgitav tähis toodud näitajate juurde sulgudes) [3]:

- S235JRH – üldkasutatav (S) külmtõmmatud keevisõmbluseta terastoru minimaalse voolavuspiiriga 235 N/mm² (235), tõmbetugevus 400N/mm², lõõgienergiatesti tulemus ruumitemperatuuril 27 J (JR), seest õõnes (H, hollow), süsinikusisaldus maksimaalselt 0,17 %;
- S355J2H – üldkasutatav (S) külmtõmmatud keevisõmbluseta terastoru minimaalse voolavuspiiriga 355 N/mm² (355), tõmbetugevus 538 N/mm², lõõgienergiatesti tulemus temperatuuril -20°C 27 J (J2), seest õõnes (H, hollow), süsinikusisaldus maksimaalselt 0,2 %;
- S355NLH – üldkasutatav (S) külmtõmmatud keevisõmbluseta terastoru minimaalse voolavuspiiriga 355 N/mm² (355), tõmbetugevus 520 N/mm², normaliseeritud struktuur (N,
veidi kvaliteetsem ja kallim teras), madaltemperatuuriseeria (L, low), seest õõnes (H, hollow), süsinikusisaldus maksimaalselt 0,23 %;

- AISI 4130 – lõõmustutud kroommolübdeen, madalsüsinikteras (41), süsinikusisaldus kuni 0,3 % (30), tõmbetugevus 655 N/mm², väga lihtsalt töödeldav materjal, peamiselt kasutuses lennunduses, ühtlasi ulukas.

3.3. Võrdlus

Materjalide võrdluseks selgitati välja võrreldavate materjalide omadused tehes päringuid Eestis metalliga tegelevatele ettevõtetele [10][11].

Tulemused on järgnevad (Tabel 1):

Tabel 1

<table>
<thead>
<tr>
<th>METALL</th>
<th>S235JRH</th>
<th>S355J2H</th>
<th>S355NLH</th>
<th>AISI4130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tõmbetugevus (N/mm²)</td>
<td>400</td>
<td>538</td>
<td>520</td>
<td>655</td>
</tr>
<tr>
<td>Voolavuspiir (N/mm²)</td>
<td>235</td>
<td>388</td>
<td>355</td>
<td>517</td>
</tr>
<tr>
<td>Pikenemine (%)</td>
<td>24</td>
<td>27</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Lõögienergia (J)</td>
<td>27</td>
<td>27</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>Tihedus (kg/m3)</td>
<td>7850</td>
<td>7850</td>
<td>7850</td>
<td>7830</td>
</tr>
<tr>
<td>Elastsusmoodul (GPa)</td>
<td>190-210</td>
<td>190-210</td>
<td>190-210</td>
<td>190-210</td>
</tr>
</tbody>
</table>

4. TUGEVUSANALÜÜSID

Jõudusid, mis turvastruktuurile avaldatakse arvutati eeldatava sõiduki kaalu, kiiruse ning kokkupõrkele kulunud aja suhtes (Valem 1, Valem 3, Valem 5). Tegemist on Newtoni II seadusega. Sõiduki eeldatavaks massiks on 1200 kg, kiirus 100km/h ehk 27,8 m/s võttes arvesse sõiduki senist suutlikust ning sõiduki esiosa pikkus 1,5 m. Välja arvutati kokkupõrkeks kulunud aeg, sõiduki aeglustus ning mõjuv jõud. Kulunud aeg tuletati keskmise kiiruse valemist

\[
V = \frac{s}{t}
\]

Seega:

Kulunud aeg:

\[
t = \frac{s}{V}
\] \hspace{1cm} (1)

kus \(V \) [m/s] - kiirus;

\(s \) [m] - teepikkus;

\(t \) [s] - aeg.

Seega,

\[
t = \frac{1,5}{27,8} = 0,054 \, (s)
\] \hspace{1cm} (2)
Aeglustus:

\[a = \frac{(V_2 - V_1)}{t} \] \hspace{1cm} (3)

kus \(V_1 \) [m/s] - algkiirus;
\(V_2 \) [m/s] - lõppkiirus;
\(t \) [s] - aeg.

Seega,

\[a = \frac{(0 - 27,8)}{0,054} = -514,8 \text{ (m/s}^2) \] \hspace{1cm} (4)

Jõud:

\[F = m \times a \] \hspace{1cm} (5)

kus \(m \) [kg] - mass;
\(a \) [m/s\(^2\)] - kiirendus.

Seega,

\[F = 1200 \times 514,8 = 617760 \text{ (N)} \] \hspace{1cm} (6)

Tugevusanalüüside korrektseks läbiviimiseks osutatakse turvastruktuuri erinevate elementidele jõudu 617760 N, imiteerides ekstreemsemat olukorda (Valem 6). Analüüsid viidi läbi materjaliga S355J2H.

Tugevusanalüüside tulemuste põhjal leitakse vajadus lisatugevust pakkuvate elementide järele.
4.1. Jõu avaldamine pikisuunalisele elemendile

Esimese analüüsi läbi viimiseks ühendati virtuaalselt turvastruktuur sõiduki külge seitsme erineva ühenduskoha abil. Nendeks olid peamine turvakaar, parempoolne pikisuunaline element, tagumised elemendid ning elemendid eesmiste amortisaatoripüstakute ning turvapuuri vahel. Turvastruktuurile mõjuv jõud osutati juhipoolsele pikisuunalisele elemendile (Sele 23). Tulemus on järgnev:

![Sele 13. Avaldatud jõu mõjul toimunud deformatsioon pikisuunalistele elementidele](image)

Valdav osa deformatsioonist mõjub pikisuunalise elemendi vertikaalpiirkonda. Selline tulemus on tingitud eesmiste amortisaatoripüstakute ja turvapuuri ühendustest, mis lisab jäikust ning aitab kaasa jõu jagunemisel struktuuris. Pildilt on näha, et avaldatud jõud soosib väänata struktuuri noolega näidatud suunas (Sele 23).

Lisaks uuriti ka antud sõlmes ekvivalent tõmbepingeid struktuurile (Von Mises Stress). Antud katse aitab analüüsimisel mõista struktuuri nõrgemaid piirkondi, ning võimalikke deformatsioone avaldatava jõunumbri surenemisel. Lisaks aitab katse mõista pingete jagunemist struktuuri vahel, tugevdavate elementide lisamise vajaduse tarbeks. Tulemus on järgnev:
Nagu näha mõjub turvastruktuurile tõmbepinge peamiselt eesmise amortisaatoripüstaku ja turvapuuri vahelises ühenduses, skaalal punane värvitoon (Sele 24). Tõmbepinged jagunevad struktuuris mööda pikisuunalise elemendi vertikaalpiirkonda, kinnituskohast allapoole. Eksisteerib oht amortisaatoripüstaku või ühenduse võimalikuks deformatsiooniks või kinnituskoha rebenemises, mida test ei näita. Materjali S355J2H voolavuspiir on 388 N/mm², seega eksisteerib, peamiselt kinnituskohas, kuid ka mujal struktuuri eesosas, kus pinged kasvavad kuni 5000 MPa ja üle. Siinkohal tasub mainida, et 1 MPa = 1 N/mm².

Ekvivalent tõmbepingete ning deformatsiooni vähendamiseks lisati eesmise amortisaatoripüstaku ja turvapuuri vahelise ühenduse juurde lisatugevust pakkuv element FIA Appendix J – Article 253 paragrahv 8.3.2.1.2 järgi variant 253-25, mis aitab tekkinud pingeid suunata ning jagada sujuvamalt struktuuri suhtes. Element lisati vaid ühele poole, avaldatud jõu piirkonda. Maksimaalne deformatsioon väheneb kolm korda (Sele 25). Üldine deformatsiooniulatus on suunatud struktuuri keskpiirkonda. Pildilt on näha, et tõmbepinge jagunemine kahe elemendi vahel tõepoolest toimib (Sele 26). Siiski eksisteerib endiselt oht ühenduskohtade võimalikuks rebenemises. Tugevduselement täidab oma eesmärgi hästi, hoides kinnitusjalga rohkem tagasi. Tulemused on järgnevad:
Endiselt esineva deformatsiooniulatuse ning tõmbepingete suuruste vähendamiseks lisati struktuurile esialgselt kavandatud eesmine uksediaagonaal, mõistaks selle otstarbekust ning näitamaks selle elemendi vajadust. Eeldavasti mõjub uksediaagonaali lisamine struktuurile positiivselt, vähendades oluliselt deformatsiooni vaadeldavas piirkonnas ning jagades tõmbepingeid struktuuri vahel veelgi sujuvamalt. Tulemused on järgnevad:
Nagu näha, siis tõepoolest pakub lisatud uksediagonaal märgatavat muutust. Maksimaalne deformatsioon on vähenenum taas kolm korda, ning jaguneb ühtlasemalt struktuuris tahapoole (Sele 27). Lisaks on näha, et tõmbepingete levimine eelnevalt vaadeldud piirkonnas, milleks on ühendus eesmiste amortisaatoripüstakute ning turvapuuri vahel, on samuti veidi vähenenud (Sele 28). Paraku mõjuvad pinged nüüd lisaks ka peamise turvakaare jalale. Struktuuri vaadeldavas piirkonnas piirkonnas ei ole võimalik enam konstruktisioonilt paremaks muuta ilma, et see muutuks kohmakaks ning rikuks sõidukijuhi vaatevälja. Tulemuste põhjal järeldati, et peale muudatuste läbiviimist suurennes tõenäosus struktuuri säilimisel purunemisteta juhul, kui mõjuvad jõud osutuvad analüüsitud
väiksemaks. Paraku ei ole võimalik teha absoluutselt jäika struktuuri, mis kokkupörke korral ei
deformeeruks. Deformatsioonid peavad esinema mõjuvate jõudude ülekandmiseks, vähendades
juhile avalduvaid vigastusi. Antud piirkonna konstruktsioon sobib autorile.

4.2. Jõu avaldamine turvastruktuuri ülemisele osale ehk katusele

Järgmine test sisaldab endas turvastruktuuri ülemisele osale jõu avaldamist. Virtuaalselt kinnitati
turvastruktuur kõigist kinnituskohadest, milleks on peamise turvakaare ja pikisuunalistele elementide kinnituskohad sõiduki kere suhtes, eesmiste amortisaatoripüstakute ja turvamuuri vaheline ühendus ning tagumiste elementide kinnituskohd tagumiste amortisaatoripüstakute suhtes. Eelnevalt väljaarvutatud jõud osutati pikisuunalistele elementide ja peamise turvakaare horisontaalpiirkondadesse. Antud piirkond asub juhi ja võimaliku kaasreisija pea kohal. Kuna suurem osa sõiduki raskusest raskusest asub ehituslikust eripärist tingituna eespool, otsustati mõjuvad jõud ka selliselt avaldada. Tulemused on järgnevad:

Sele 19. Jõu avaldamisel toimunud deformatsioon katusepiirkonnas [autori joonis]

Deformatsiooniiulatus katusepiirkonnas materjaliga S355J2H on kuni 70 mm. Lisaks esineb deformatsiooni ka katusepiirkonna tagumises osas, peamisel turvakaarel ning ka pikisuunalistele elementidel. Pildilt on näha, kuidas toimub avaldatava jõu jagunemine struktuuri vahel (Sele 29). Antud deformatsiooniiulatus ei ohusta otseselt juhti ega kaasreisijat (Sele 2). Antud tulemust on võimalik parendada elemente lisades. Viidi läbi ka ekvivalent tõmbepinge test väljaselgitamaks struktuuris mõjuvad pinged. Tulemus on järgnev:
Sele 30. Ekvivalent tõmbepinge testi tulemus katuspiirkonnas [autori joonis]

Valdav osa tõmbepingetest esineb pikisuunalise elemendi horisontaalpiirkonnas, kuhu avaldatud jõud ka mõjub. Osa pingeid mõjub ka peamise turvakaare ning pikisuunaliste elementide vahelises ühenduskohas (Sele 30). Struktuurile lisati kaks tugevduselementi, FIA Appendix J – Article 253 paragrahvii 8.3.2.1.4 järgi variant 253-15 ning paragrahvii 8.3.2.2.6 järgi variant 253-31, milleks on lisaelement pikisuunalise elemendi painde juures ning tugevduselement pikisuunalise elemendi ning peamise turvakaare vahel. Eeldatavasti aitavad need elemendid suunata avaldatavat jõudu sujuvalt katuspiirkonnast sõiduki põrandapiirkonda. Samuti peaksid need vähendama tekkivaid pingeid. Tulemused on järgnevad:

Sele 31. Deformatsioonimõõdut lisatud elementidega [autori joonis]

![Sele 32. Ekvivalent tömbepinge test lisatud elementidega [autori joonis]](image)

Testi tulemus kinnitab eelnevalt tehtud oletusi, lisatud elementide otstarbekuse suhtes. Pinge suunatake mõõda pikisuunalise elemendi ning peamise turvakaare vahel olevat elementi peamise turvakaare jala kaudu sõiduki põrandapiirkonda (Sele 32). Lisatud element pikisuunalise elemendi painde vahel väga suurt mõju ei avalda, kuid on näha, et see leevendab pingeid mõjuned jõu piirkonna eesosas (Sele 32).

4.3. Jõu avaldamine peamisele turvakaarele

Kolmas test sisaldab endas peamisele turvakaarele jõu avaldamist. Virtuaalselt kinnitati turvaeenakse sarnaselt eelnevalle testile peaaegu kõikidest kinnituskohtadest. Vabaks jäeti vaid peamise turvakaare üks kinnituskoht kere suhtes, kuhu ka jõud osutati. Jõu avaldamise piirkond valiti struktuuri kõige nõrgema elemendi analüüsimeks. Alt ülesse suunaga on reaalseid muutusi ning lisaelementide vajadust paremini näha. Tulemus on järgnev:
Nagu näha, on antud tulemus katastroofiline (Sele 33). Maksimaalne deformatsioon on üle 1000 mm. Vaadeldav struktuuriline lahendus ei pea antud jõule mitte mingil juhul vastu. Tegemist on ka struktuuri kõige nõrgema ühenduskohaga, ilma ühegi lisatugevust pakkuva elemendita. Täpsema arusaama tekitamiseks viidi läbi ka ekvivalent tõmbepingete test. Tulemus on järgnev:

Sele 34. Ekvivalent tõmbepinge testi tulemus peamise turvakaare suhtes [autori joonis]
Tulemuste põhjal järeldati, et antud jõud võib reaalsuses vaadeldava küljeposti struktuuri küljest lahti rebida. Kõige suurem pinge esineb struktuuris erinevates ühenduskohtades põikisuunaliste elementide ning peamise turvakaare suhtes (Sele 34). Samas on näha, et ühendus eesmiste amortisaatoripüstakute ning turvapuuri vahel töötab. Ilma selleta oleksid tulemused veelgi katastroofilisemad. Tulemuse parandamiseks lisati vaadeldavasse piirkonda esialgu eesmine uksediagonaal. Tulemus on järgnev:

Sele 35. Deformatsiooniulatus peamisel turvakaarel eesmise uksediagonaaliga [autori joonis]

Ka ekvivalent tõmbepeinge test näitab, et lisaelement pakub märgatavat erinevus tulemustes. Tulemus on järgnev:
Pingetesti põhjal järeldati, et vaadeldav piirkond vajab veel mitmeid muudatusi (Sele 36). Elemente tuleb lisada tagumise uksediagonaali näol ning peamise turvakaare, pikisuunaliste ja tagumiste elementide vahelisse ühendusse. Mida täpsemalt, selgub edasiste katsete käigus. Lisati tagumine uksediagonaal. Tulemus on järgnev:

Sele 36. Ekvivalent tömbepinge testi tulemus lisatud elemendiga [autori joonis]

Sele 37. Deformatsiooniulatus lisatud uksediagonaalidega [autori joonis]
Deformatsioon peamise turvakaare jala suhtes väheneb (Sele 37). Paraku ei ole üldine deformatsiooniulatus siiski veel piisav struktuuri säilimise tagamiseks. Ei esinenud olulisi muutusi ka peamise turvakaare horisontaalpiirkonnas. Edasiste otsuste tegemiseks vaadeldi taaskord ekvivalent tõmbepingete katset. Tulemus on järgnev:

Sele 38. Ekvivalent tõmbepingete testi tulemus lisatud uksediagonaalidega [autori joonis]

Endiselt eksisteerivad pinged samades piirkondades, kus varem. Samas on toimunud jagunemine rohkem uksediagonaalidele, mis üldist tulemust veidi parandavad (Sele 38). Paraku ei ole antud lahendus siiski veel piisav. Otsustati lisada vaadeldavasse piirkonda ka rist peamise turvakaare vahele, FIA Appendix J – Article 253 paragrahvi 8.3.2.1.1 järgi variant 253-7 [8]. Tulemus on järgnev:
Sele 39. Deformatsiooniulatus lisatud ristiga peamise turvakaare vahele [autori joonis]

Antud muudatuse tegemine pakub väga suurt parandust eelkõige peamise turvakaare jala deformatsioonis. Nagu näha, on kõik kinnitusjalad taaskord ühel joonel, ning sõiduki salongiruumist küljesuunal ei ulatu enam struktuur niivõrd palju välja (Sele 39). Deformatsioon on kandunud üle struktuuri teisesele poolele tänu jäikusele, mille tingib lisatud rist peamise turvakaare vahel (Sele 39). Antud struktuurimuutus ei ole ideaalne, kuid oluliselt parem kui esialgne testi tulemus. Viidi läbi ka ekvivalent tõmbeapinge test nägemaks muudatuse mõju. Tulemus on järgnev:

Sele 40. Ekvivalent tõmbeapinge testi tulemus lisatud ristiga peamise turvakaare vahele [autori joonis]
Tulemus näitab, et pingete osakaal vaadeldavas piirkonnas on oluliselt vähenenud. Siiski eksisteerib murekoht peamise turvakaare ning pikisuunaliste ja tagumiste elementide vahelises ühenduskohas. Lisaks esineb suur pinge endiselt tagumise elemendi paindekohas (Sele 40). Tehti viimane parendav muudatus. Lisati FIA Appendix J – Article 253 paragrahvi 8.3.2.2.6 järgi lisaelemendid eelnevalt mainitud murekohta variant 253-31 ning 253-32 järgi [8]. Tulemus on järgnev:

Sele 41. Deformatsiooniulatus lisatud tugevuselementidega eestvaates [autori joonis]

Paremaks arusaamaks lisati ka külgvaade, kus on näha lisatud elemendid peamise turvakaare ning pikisuunaliste ja tagumiste elementide ühenduskohta (Sele 42). Ühtlasi näeb deformatsiooni jagunemist struktuuri vahel teise nurga alt.
Üldine deformatsiooniulatus on vähenedud esialgse tulemusega ligi 1000 mm võrra, mis on üsnagi märkimisvääärne tulemus (Sele 33, Sele 41, Sele 42). Antud lahendus ei ohusta enam sõiduki juhti ega võimalikku kaasreisijat kokkupõrkeolukorras. Paraku deformeerub antud kokkupõrke käigus ka sõiduki põrandapiirkond, kuid muutus salongiruumi mõõtmetes on sarnane turvastrukturi deformeerumisega. Siiski on leitud lahendus oluliselt parem kui esialgne struktuur. Deformeerumine peab toimuma kokkupõrke olukorras, et summutada mõjunud jõud ja vähendada vigastusi sõidukijuhtile. Antud piirkonna katsete viimase tõmbepinge testi tulemus on järgnev:

Sele 42. Deformatsiooniulatus lisatud tugevuselementidega külgvaates [autori joonis]

Sele 44. Võrdlus muudatuste läbiviimisel eestvaadetega [autori joonis]
4.4. Jõu avaldamine a-piilari piirkonda

Lisaks peamise turvakaare tugevuse väljaselgitamisele viidi läbi katse ka sõiduki a-piilari alla jääva turvastruktuuri osa ehk pikisuunalise elemendi suhtes. Deformatsioonikatse tulemused on järgnevad:

Sele 45. Jõu avaldamisel toimunud deformatsioon a-piilari piirkonda [autori joonis]

Tulemuste põhjal on näha, et otseselt juhi elu antud deformatsioon ei ohusta, kuid antud piirkonda on võimalik parendada (Sele 45). Kaasa aitavad suuresti eelmises testis läbi viidud muudatused. Lisada tuleks vaid suunavad elemendid juhi ja võimaliku kaasreisija peade kohale pikisuunaliste elementide vahele. Ekvivalent tõmbepinge testi tulemus:
Sele 46. Ekvivalent tömbepinge test a-piilari piirkonda [autori joonis]

Tömbepinge katse tulemuses näeb, et maksimaalseid pingeid levib väga paljudes sõlmedes üle terve struktuuri (Sele 46). Tulemuse põhjal tuleb lisada tugevduselemendid pikisuunalise elemendi paindve vahele FIA Appendix J – Article 253 paragrahvi 8.3.2.1.4 järgi variant 253-15, peamise turvakaare ning pikisuunaliste ja tagumiste elementide ühenduskohta paragrahvi 8.3.2.2.6 järgi variant 253-31 ja 253-32 ning suunavad elemendid sõiduki juhi ja võimaliku kaasreisija peade kohale paragrahvi 8.3.2.1.3 järgi variant 253-14 [8]. Tulemus on järgnev:

Sele 47. Deformatsiooniulatus lisatud tugevduselementidega [autori joonis]

Deformatsiooniulatus vähenes poole võrra. Vaadeldav piirkond sõiduki juhi ja võimaliku kaasreisija ruumi ümber on tulemuste põhjal piisavalt ohutu (Sele 47). Tegemist on sellise piirkonnaga, kust jõudusid on veidi keerukam ümber suunata, sest FIA reeglistik lubab ainult teatud lisaelemente [8].
Autor ei näe FIA reeglistiku järgi elemendi 253-15 otset vajadust tingituna suuresti sõidukijuhi vaatevälja halvenemises antud sõiduki puhul. Tema ehituslik eripära ei soosi antud elemendi kasutamist ning selle kasutamiseks on vaja sõiduki salongiruumi ulatuslikult modifitseerida. Kui peaks tekima vajadust antud elemendi järel, on võimalus see siiski konstruktsioonile lisada, nagu ka kõiki teisi lisaelemente. Ekvivalent tõmbepingete testi tulemus:

Sel 48. Ekvivalent tõmbepingete testi tulemus lisatud tugevduselementidega [autori joonis]

Tõmbepingete suuruse osakaal struktuuris on vähenenud, peamiselt turvastruktuuri teises küljes. Maksimaalseid pingeid esineb vaid juhipoolses küljes, kuhu ka jõud avaldati (Sel 48). Antud lahenduse korral on ainukeseks suuremaks murekohaks eesmise amortisaatoripüstaku ning turvapuuri vaheline ühendus, kus pinged kõige suuremad on. Selle leevamiseks on vajalik lisada tugevduselement antud sõlme.

4.5. Järeldus

Läbiviidud testide tulemused andsid hea arusaama, kuidas jõud ja pinged struktuuris jagunevad, millistes kohtades jõud ja pinged lisamõju avaldavad, milliseid tulemusi annavad vajalike elementide lisamine ning kui hästi on esialgne turvastruktuur projekteeritud. Lõpptulemusega jäädi rahule (Sel 41, Sel 42, Sel 43). Esialgselt projekteeritud turvastruktuur vajab palju lisatugevust pakkuvaid elemente, ainuüksi uksediagonaalidest ei piisa. Ühtlasi tõi test välja mõne tähelepanu vajava piirkonna, kuhu tulevikus lisatugevust pakkuvaid elemente lisada saab. Üldpilt analüüse läbiviies näitab, et esialgne projekteeritud turvastruktuur on küll piisav kriteeriumite kompaktne,
esteetilist välimust omav ning võimalikult praktiline, kuid mitte kriteeriumite ohutust tagav ning jääkust lisav tagamiseks. Lisada tuleks rist peamise turvakaare vahele, juhi ja võimaliku reisija peade kohale pikisuunaliste elementide vahele, lisaelemendid eesmiste amortisaatoripüstakute ning turvapuuri vaheliste ühenduste külge ja ka lisaelemente peamise turvakaare ja pikisuunaliste ning tagumiste elementide vahele. Lisaks eksisteerib võimalus lisada turvastruktuurile tugevdusnurkasid erinevate ühenduste juurde tagamaks veelgi jäigem struktuur. Lõplik konstruktsioon sobib autorile.
5. MAKSUMUMUS

5.1. Kulunud aeg

Hinnanguline väljaarvestatud ajakulu:

- eeltöö – 4 h;
- mõõtmine – 3 h;
- eskiisimine – 2 h;
- materjaliuuring – 2 h;
- lahenduste väljamõtlemine, projekteerimine – 60 h (5 päeva, päevas 12 h);
- analüüsime – 20 h.

Kokku kulus tegevustele hinnanguliselt vähemalt 90 h. Arvestades tunnitöö hinnaks 20 €, läheb teoreetiline osa kliendile maksma 1800 €. Arvutiga töötamise tunnihind on oluliselt väiksem seoses kulutuste vähesusega.
5.2. Materjal

Valitud materjaliks osutus teras S355J2H. Tema näitajad on järgnevad (Tabel 2):

Tabel 2

<table>
<thead>
<tr>
<th>Valitud materjali näitajad</th>
</tr>
</thead>
<tbody>
<tr>
<td>METALL</td>
</tr>
<tr>
<td>Tõmbetugevus (N/mm²)</td>
</tr>
<tr>
<td>Voolavuspiir (N/mm²)</td>
</tr>
<tr>
<td>Pikenemine (%)</td>
</tr>
<tr>
<td>Löögienergia (J)</td>
</tr>
<tr>
<td>Tihedus (kg/m³)</td>
</tr>
<tr>
<td>Elastsusmoodul (GPa)</td>
</tr>
</tbody>
</table>

Vajaminev materjalikogus projekteeritud turvastruktuuriks koos lisaelementidega, varuga ning väljauuritud hindadega [12][13]:

- 45 mm x 2,5 mm (välisdiameeter x seinapaksus) toru – 27 m, 217 €;
- 38 mm x 2,5 mm (välisdiameeter x seinapaksus) toru – 4 m, 29 €;
- 100 mm x 120 mm x 3mm metallplaadid – 4 tk, 40 €;
- kõrvad eemaldatavate elementide kinnitamiseks – 8 tk, 40 €;
- eemaldatavate elementide kinnitused – 8 tk, 120 €.

Materjali hind kokku: 446 €.

5.3. Praktiline töö

Turvapuuri valmistamiseks kuluv aeg jaotatakse mitme päeva peale. Valmistamine ning sõidukisse paigaldamine võtab vähemalt 24 h, ilma sõiduki salongi demonteerimise ning tõöjärgse komplekteerimiseta. Juhul, kui sõiduki salongiruum on vaja turvastruktuuri paigaldamiseks piisavalt demonteerida lisandub 5 h. Salongiruumi komplekteerimine võtab sel juhul aega 3 h.
Aja sisse on arvestatud hangitud materjali vajaliku mõõtu töötlemine, materjali painutamine, ühenduskohtade töötlemine, keevisõmblused, lisaelementide liitmine turvastruktuuride keevisliite abil, turvastruktuuri sõidukisse paigaldamine.

Arvestades tunnihinnaks 35 €, on töö maksumus alates 840 €. Sõiduki salongiruumi demonteerimise ning komplekteerimisega 1120 €.

5.4. **Turvastruktuur**

Turvapuuri baasstruktuur sisaldab endas:

- 1 x peamine turvakaar;
- 2 x pikisuunaline element;
- 2 x tagumine element;
- 3 x põikisuunaline element;
- 2 x eesmise amortisaatoripüstaku ja turvapuuri vaheline ühendus;
- 4 x 120 cm² kinnitusplaat;
- 8 x element eemaldatava detaili kinnitamiseks.

Turvapuuri baasstruktuurile lisatud elemendid:

- 2 x eesmine uksedionaal;
- 2 x tagumine uksedionaal.

Turvastruktuuri tööse võtmisel tuleb arvestada, et võimalusel on vajalik lisada lisatugevust pakkuvalt elemente näiteks eesmiste amortisaatoripüstakute ja turvapuuri vahelistele ühendustele ning lisajäikust pakuv rist peamise turvakaare külge. Paraku nende elementide lisamisel on vaja sõiduki salongiruumi rohkem modifitseerida.

Võib lisanduda ettenägematuid kulutusi.
KOKKUVÕTE

SUMMARY

The following thesis *Roll Cage with Removable Bolt On Elements* is based on designing a roll cage for a 1984 Audi 80 B2 Typ 81/85, which is going to be taking part in a drag race for top speed. This topic has been vital from the safety aspect since 1964 when the first roll bar was made. During the course of this thesis the author found out specific rules from FIA Appendix J – Article 253 rulebook for designing the roll cage correctly. It had to guarantee the safety of the driver, to have stiffening characteristics towards the vehicles body, to have an aesthetic appearance, to be as compact and close to the vehicles body as possible and to have practical figures when if needed to, towards getting in and out of the vehicles interior during maintenance or further modifications in the future. Some of the questions that were asked during the introduction of this thesis were: What kind of material to pick? What does the roll cage have to be like? Is it possible to make the removable bolt on elements easy to install and remove? How to attach the roll cage to the vehicle? All of these questions got an answer during this thesis. The designs for this kind of vehicle didn’t suit the needs of the vehicles owner so the author had to think of something new. After making the 3D model, strength analyzes were carried out with a chosen material which was cold drawn seamless steel tube S355J2H to understand the weak points of the construction and the need for additional reinforcements. Also for checking the quality of the initially designed roll cage. The strength analyzes revealed that many additional reinforcements were truly needed, for example two diagonal members between the main roll bar, reinforcements between the longitudinal members, backstays and the main roll bar and between the roll cage and the vehicles front shock towers. The possibility of adding extra reinforcements if needed in the future was implemented in the design. The removable bolt on elements were made to be simple to install and remove for the need of access to the vehicles interior during maintenance or further modifications in the future. During this thesis the author gained knowledge and theoretical experience in this field to understand what a roll cage really is, how to design one and what it takes to make it as perfect as possible. The author has been interested in these types of constructions for a long time and it is not excluded that the author will be working in the future in this field as well.
VIIDATUD ALLIKAD

LISAD

Lisa 1. Peamise turvakaare tehniline joonis
Lisa 2. Pikisuunaliste ning tagumiste elementide tehniline joonis
Lisa 3. Eemaldatava elemendi kinnituskõrva tehniline joonis
Lisa 4. Kinnituspuksi tehniline joonis
Lisa 5. Kinnituskõrva vastuse tehniline joonis
Lisa 6. Kinnitusplaadi tehniline joonis
Lisa 1. Peamise turvakaare tehniline joonis

Material: S355J2H
Markimata punabed: Mass: Moot: 120
Teostas: Mario Teilmum
Nimetus: Peamise turvakaar
Kontrollis: Kinnitas:

TTK AT-81
Leht: Taasis: LT 01.00.00.01

Fonnoot: A4
Lisa 2. Pikisuunaliste ning tagumiste elementide tehniline joonis

![Diagram of technical drawing](image)

<table>
<thead>
<tr>
<th>Materjal</th>
<th>355J2H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teostas</td>
<td>Mario Tarmum</td>
</tr>
<tr>
<td>Kontrollis</td>
<td></td>
</tr>
<tr>
<td>Kinnitas</td>
<td></td>
</tr>
<tr>
<td>Markimata plihaldanimetus</td>
<td>Pikisuunaline ning tagumine element</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
</tr>
<tr>
<td>Moöt</td>
<td>120</td>
</tr>
<tr>
<td>Leht</td>
<td>TTK AT-81</td>
</tr>
<tr>
<td>Tahis</td>
<td>LT 0100.00.03</td>
</tr>
<tr>
<td>Formaat</td>
<td>A4</td>
</tr>
</tbody>
</table>
Lisa 3. Eemaldatava elemendi kinnituskõrva tehniline joonis
Lisa 4. Kinnituspuksi tehniline joonis

<table>
<thead>
<tr>
<th>Material</th>
<th>Markimato piirilabed</th>
<th>Mass.</th>
<th>Muut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S355J2H</td>
<td></td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

Teostas: Mario Tenium
Kontrollis: Kinnitas

ITK A1-81
LT 01.00.00.06

Formaāt: A4
Lisa 5. Kinnituskõrva vastuse tehniline joonis
Lisa 6. Kinnitusplaadi tehniline joonis

![Diagram of a CD case with dimensions: 100x3, 120, 100, 16.51, 6.8, 10, 6.8, 16.51, 70, and material S355J2H.]